.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_3D-plot.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_3D-plot.py: 3D Slip Figure of a Stochastic generation ============================================================================================================ This example makes an 3d plot of Slip distribution :param X_array: Longitude grid :param Y_array: Latitude grid :param depth: Depth grid :param Slip: Slip grid :param filename: Optional, filename if you wanna save fig :return: 3D Figure of Slip distribution .. GENERATED FROM PYTHON SOURCE LINES 13-102 .. image-sg:: /auto_examples/images/sphx_glr_plot_3D-plot_001.png :alt: Slip_0004_Simulation :srcset: /auto_examples/images/sphx_glr_plot_3D-plot_001.png :class: sphx-glr-single-img .. code-block:: Python import numpy as np import matplotlib.pyplot as plt import scipy.io from matplotlib import cm from matplotlib.ticker import LinearLocator from matplotlib.colors import ListedColormap, Normalize import geostochpy def plot_3d(X_array,Y_array,depth,Slip,filename=None): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # Plot the surface with face colors taken from the array we made. surf = ax.plot_surface(X_array,Y_array, depth, facecolors=cm.rainbow(Slip/np.max(Slip.flatten())), linewidth=0) # Customize the z axis. # Agregar barra de colores con el rango correcto norm = plt.Normalize(np.min(Slip.flat), np.max(Slip.flat)) sm = plt.cm.ScalarMappable(cmap=plt.cm.rainbow, norm=norm) sm.set_array([]) # este paso es necesario para que la barra de colores refleje correctamente los valores plt.title('Slip_0004_Simulation') # Configurar etiquetas ax.set_xlabel('Longitude') ax.set_ylabel('Latitude') ax.set_zlabel('Depth') cbar = fig.colorbar(sm, ax=ax, pad=0.1) cbar.set_label('Slip[m]') # Configurar posición de la barra de colores cbar.ax.yaxis.set_label_position('right') # Puedes ajustar la posición según tus necesidades if filename!=None: fig.savefig(filename) return plt.show() nx=18 ny=50 width=180 length=500 dx=width/nx dy=length/ny # Primero, se cargarán lo datos del trench de Chile, para realizar una geometría paralela a ella # # También, se cargarán los archivos de Slab2, que contienen los parámetros geométricos de la zona de subducción de Sudamérica # In[3]: route_trench = geostochpy.get_data('trench-chile.txt') # route to trench file lons_fosa, lats_fosa = geostochpy.load_trench(route_trench) # load slab files slabdep,slabdip,slabstrike,slabrake=geostochpy.load_files_slab2(zone='south_america',rake=True) # Se realiza la falla a lo largo del trench, y se le da el valor más al norte de la falla. # # Luego, se deben tener las profundidades en cada subfalla, para ello se interpolan los datos de Slab2 con geostochpy.interp_slabtofault # In[4]: north=-29.5 lons,lons_ep,lats,lats_ep=geostochpy.make_fault_alongtrench(lons_fosa,lats_fosa,north, nx,ny,width,length) [X_grid,Y_grid,dep,dip,strike,rake]=geostochpy.interp_slabtofault(lons,lats,nx,ny,slabdep,slabdip,slabstrike,slabrake) # ##### Se crea la matriz de slips medios con geostochpy.matriz_media(mean,dep) # In[15]: # ## Creation slip models # mean matrix # Mw=9.0 media,rigidez=geostochpy.media_slip(Mw,dx*1000,dy*1000,dep) leveque_taper=geostochpy.taper_LeVeque(dep,55000) # leveque_taper=leveque_taper/np.max(leveque_taper) villarroel_taper=geostochpy.taper_except_trench_tukey(dep,alpha_dip=0.3,alpha_strike=0.3) taper=leveque_taper*villarroel_taper # taper=geostochpy.taper_except_trench_tukey(dep,alpha_dip=0.6,alpha_strike=0.4,dip_taperfunc=geostochpy.taper_LeVeque,strike_taperfunc=geostochpy.tukey_window_equal) mu = geostochpy.matriz_medias_villarroel(media,taper) # matriz de covarianza C = geostochpy.matriz_covarianza_optimized(dip, dep, X_grid, Y_grid,length*1000,width*1000) # for comcot simulation Slip=geostochpy.distribucion_slip(C, mu, 20) Slip,rigidez,Mo_original,Mo_deseado=geostochpy.escalar_magnitud_momento(Mw, Slip, dep, dy*1000, dx*1000,prem=True) # se escala el Slip a la magnitud deseada <--------- Slip final # Hypocenter=geostochpy.hypocenter(X_grid,Y_grid,dep,length,width) se tiene en cuenta la rigidez con el modelo PREM incluido @fetched with Rockhound plot_3d(X_grid,Y_grid,-1*dep,Slip) .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 13.056 seconds) .. _sphx_glr_download_auto_examples_plot_3D-plot.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_3D-plot.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_3D-plot.py ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_